

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry

Tetrahedron: Asymmetry 18 (2007) 1701–1711

Natural product synthesis from $(8aR)$ - and $(8aS)$ -bicyclofarnesols: synthesis of (+)-wiedendiol A, (+)-norsesterterpene diene ester and (-)-subersic acid

Yuusuke Arima, Masako Kinoshita and Hiroyuki Akita*

School of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan

Received 15 June 2007; accepted 10 July 2007

Abstract—Both enantiomers (8aR)-7 and (8aS)-7 of bicyclofarnesol were synthesized from the enzymatic resolution products (1R,4aR,8aR)-1,2,3,4,4a,5,6,7,8,8a-decahydro-5,5,8a-trimethyl-2-oxo-trans-naphthalene-1-methanol-2-ethylene acetal (8aR)-5 (98% ee) and acetate of (1S,4aS,8aS)-1,2,3,4,4a,5,6,7,8,8a-decahydro-5,5,8a-trimethyl-2-oxo-trans-naphthalene-1-methanol-2-ethylene acetal $(8aS)$ -6 (>99% ee), respectively. The formal synthesis of (+)-wiedendiol 1 was achieved via a coupling reaction of an ate complex derived from 1,2,4-trimethoxybenzene with allyl bromide (8aS)-8 derived from (8aS)-7. The total synthesis of $(+)$ -norsesterterpene diene ester 2 was achieved, based on the synthesis of $(13E,10S)$ - α , β -unsaturated aldehyde 12, derived from (8aS)-7, followed by the selective construction of the $(3E,5E)$ -diene moiety including a C(2)-stereogenic centre in (+)-2. The total synthesis of (-)-subersic acid 3 was carried out based on a Stille coupling between allyl trifluoroacetate congener 25c, derived from (8aR)-7, corresponding to the diterpene part, and aryl stannane congener 26 in the presence of Pd catalyst and CuI as an additive. $© 2007 Elsevier Ltd. All rights reserved.$

1. Introduction

There are many natural products containing the 2,5,5,8atetramethyl-3,4,4a,5,6,7,8,8a-octahydro-naphthalen-1-yl] methylene skeleton. Typical among these are (+)-wieden-diol A [1](#page-10-0),¹ (+)-norsesterterpene diene ester 2^2 2^2 (-)-subersic acid $3³$ $3³$ [\(Scheme 1\)](#page-1-0). For the synthesis of these compounds, $(8aR)$ - and $(8aS)$ -bicyclofarnesols 7 are desirable starting materials. The conversion of the natural product $(-)$ -sclareol to $(8aS)$ -7^{[4](#page-10-0)} and the synthesis of $(8aR)$ -7^{[5](#page-10-0)} derived from (3S)-2,2-dimethyl-3-hydroxy-cyclohexanone, have been reported. Meanwhile, both $(8aR)$ -7 and $(8aS)$ -7 were obtained based on the optical resolution of β -keto ester (\pm) -4 using 1,4-di-O-benzyl-L-threitol as a chiral auxiliary.^{[6](#page-10-0)} In addition, the lipase-assisted resolution of the racemic primary alcohol (\pm) -5, derived from (\pm) -4, was reported by us to give (8aS)-acetate 6 (49%, >99% ee) and (8aR)-pri-mary alcohol 5 (49%, 98% ee).^{[7](#page-10-0)} This method of enzymatic resolution was found to be effective, and the E-value was estimated to be 921. Conversion of $(8aR)$ -5 to $(8aR)$ -4

was achieved^{[7](#page-10-0)} by a reported procedure,^{[6](#page-10-0)} and (8aR)-7 was obtained from $(\hat{8}aR)$ -4 by a reported procedure^{[5,6](#page-10-0)} in 74% overall yield (three steps). Enantiomer (8aS)-7 was also obtained from $(8aS)$ -6 in the same way in which $(8aR)$ -7 was prepared from $(8aR)$ -5 [\(Scheme 1](#page-1-0)). Herein we report concise syntheses of $(+)$ -wiedendiol A 1 and $(+)$ -norsesterterpene diene ester 2 from $(8aS)$ -7, and $(-)$ -subersic acid (3) from $(8aR)$ -7.

2. Formal synthesis of (+)-wiedendiol A 1

Wiedendiol A 1, which was isolated from the marine sponge Xestospongia wiedenmayeri, inhibits cholesteryl ester transfer protein (CETP). The first synthesis of 1 was achieved based on the condensation of the drimanic aldehyde obtained from $(-)$ -sclareol with the aryllithium derived from 3,4-dibenzyloxy anisole.^{4b} A straightforward synthesis of wiedendiol A analogue 11 from (8aS)-7 is shown in [Scheme 2.](#page-1-0)

The reaction of an ate complex 10 derived from 1,2,4-trimethoxybenzene 9 with allyl bromide (8aS)-8 obtained by treatment of $(8aS)$ -7 with PBr₃ gave the desired product

^{*} Corresponding author. Tel.: $+81$ 047 472 1805; fax: $+81$ 047 476 6195; e-mail: akita@phar.toho-u.ac.jp

^{0957-4166/\$ -} see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2007.07.010

Scheme 1. Reagents and conditions: (a) (1) $(EtO)_2P(O)Cl/NaH/THF$; (2) Me_2CuLi/Et_2O ; (3) $(^iBu)_2AH/toluene$.

Scheme 2. Reagents and conditions: (a) $PBr_3/pyridine/Et_2O$; (b) (1) $^tBuLi/TMEDA/Et_2O$; (2) CuCN.

 $\{(10^{\prime}S)$ -11, $[\alpha]_D^{22} = +69.7$ (c 1.71, CHCl₃)} in 56% yield from $(8aS)$ -7. The spectral data $(^1H \overline{NMR})$ of synthetic $(10'S)$ -11 was identical to that previously reported.^{[8](#page-10-0)} The specific rotation of synthetic $(10'S)$ -11 was in accordance with that of the reported sample $\{[\alpha]_D^{25} = +72.0$ (c 1.75, CHCl₃)}.^{[8](#page-10-0)} The synthesis of wiedendiol A 1 from $(10'S)$ -11 has already been achieved based on selective demethylation.^{[8](#page-10-0)}

3. Synthesis of (+)-norsesterterpene diene ester 2

(+)-Norsesterterpene diene ester 2 was originally isolated from an Australian marine sponge, Latrunculia brevis, and its structure was determined by detailed spectroscopic analysis, chemical derivatization and degradation.[2](#page-10-0) The synthesis of 2 was achieved by the preparation of the chiral E,E-diene part corresponding to the side chain of 2 and

addition to (-)-2,5,5,8a-tetramethyl- octahydronaphthalen-1-one, derived from $(-)$ -carvone.^{[9](#page-10-0)} The retrosynthesis of $(+)$ -2 is shown in Scheme 3. Our synthetic plan for (+)-2 is based on synthesis of $(13E,10S)$ - α , β -unsaturated aldehyde 12, followed by the selective construction of the (3E,5E)-diene moiety including a C(2)-stereogenic centre in $(+)$ -2.

Treatment of $(8aS)$ -7 with PBr₃ followed by acetoacetic ester synthesis gave methyl ketone (10S)-14 [40% overall yield from (8aS)-7], which was subjected to a Horner– Emmons reaction to afford a 7:2 mixture of (13E)- and (13Z)- α , β -unsaturated esters 15. DIBAL reduction of this mixture gave a mixture of $(13E)$ - and $(13Z)$ -allylic alcohol **16**, which was separated to give $(13E)$ -16 [70% overall yield from $(10S)$ -14] and $(13Z)$ -16 $[20\%$ overall yield from (10S)-14]. The 13 E -geometry of 16 was confirmed by an NOE enhancement (1.3%) between the C(13)-methyl group and the C(15)-methylene group. Dess–Martin oxidation of (13E)-16 afforded the desired aldehyde (10S)-12 in 89% yield. For selective construction of the (3E,5E)-diene moiety including a $C(2)$ stereogenic centre in $(+)$ -2, a modified Julia coupling method^{[10](#page-10-0)} using a chiral sulfone, (S) -13a or (S) -13b, was thought likely to be effective. Commercially available methyl (S)-3-hydroxy-2-methylpropionate 17 was used for the synthesis of (S) -13a and (S) -13b as the starting materials. Silylation $\{(S)$ -18, 90% yield $\}$ of (S) -17 followed by reduction with $LiBH₄$ gave (S)-alcohol 19 (98% yield), which was treated with 2-mercaptobenzothiazole (BTSH) in the presence of Ph_3P and diethylazodicarboxylate to provide (S)-sulfide 20a (82% yield). Oxidation of (S) -20a gave the desired sulfone 13a in 80% yield. Treatment of (S) -19 with 1-phenyl-1H-tetrazole-5-thiol (PTSH) in the presence of Ph_3P and diethylazodicarboxylate provided the (S)-sulfide 20b (96% yield). Oxidation of (S) -20b gave the desired sulfone 13b in 59% yield. A modified Julia coupling of (10S)-12 and 13a in the presence of lithium bis(trimethylsilyl)amide (LHMDS) gave a 6.2:1 $(E:Z)$ mixture (73% yield) of (3E)-21 and (3Z)-21, while coupling of (10S)-12 and 13b in the presence of LHMDS afforded a 11:1 $(E:\mathbb{Z})$ mixture (83% yield) of (3E)-21 and (3Z)-21. Deprotection of the silyl group in an 11:1 mixture of $(3E)$ -21 and $(3Z)$ -21 followed by chromatographic separation provided the desired alcohol $(3E)$ -22 $(81\%$ yield); this was then subjected to a Dess–Martin oxidation to give the corresponding aldehyde 23 in 53% yield. Oxidation of 23 in tert-BuOH with $NaClO₂$ in the presence of 2-methyl-2-butene and $NaH₂PO₄$ gave carboxylic acid 24, which was treated with $CH₂N₂$ to afford the corresponding methyl ester (+)-2 $\{[\alpha]_D^{25} = +12.4$ (c 0.55, CHCl₃)) in 33% overall yield. The spectral data $(^1H$ and ^{13}C NMR) of synthetic $(+)$ -2 were identical to those previously reported for (+)-[2](#page-10-0),² including the specific rotation $\{[\alpha]_D = +13.3$ (c 2.55, $CHCl₃)$.^{[2](#page-10-0)}

Scheme 3. Reagents and conditions: (a) (1) PBr₃/pyridine/Et₂O; (2) methyl acetoacetate/'BuOK/DMSO; (3) 2M NaOH/MeOH; (b) (1) (EtO)₂P(O)CH₂COOMe/NaH/THF; (c) (1) (ⁱBu)₂AIH/toluene; (2) separation (d) Dess-Martin reagent/CH₂Cl₂; (e) [']BuPh₂SiCl/imidazole/DMF; (f) LiBH₄; (g) for 20a: BTSH/EtOOC–N=N=COOEt/Ph₃P/THF for 20b: PTSH/EtOOC–N=N–COOEt/Ph₃P/THF; (h) (NH₄)₆Mo₇O₂₄.4H₂O/30% H₂/ EtOH; (i) $(Me₃Si₂N⁻Li⁺ (LHMDS)/THF$; (j) $(1)'Bu₄N⁺F⁻(TBAF)/THF$; (2) separation; (k) NaClO₂/2-methyl-2-butene/NaH₂PO₄/'BuOH/H₂O; (l) $CH₂N₂/Et₂O.$

4. Synthesis of $(-)$ -subersic acid 3

(-)-Subersic acid 3, which was originally isolated from the Papua New Guinean sponge Suberea sp., an inhibitor of human 15-lipoxygenase.^{[3](#page-10-0)} The structure of $(-)$ -3 was determined by extensive NMR analysis, and the (5R,10R)-absolute structure of $(-)$ -3 was deduced based on the positive molar rotation of $(-)$ -[3](#page-10-0).³ The first synthesis of $(-)$ -3 was achieved based on the carbon–carbon bond formation at the dotted line a ([Scheme 1\)](#page-1-0) by coupling of an aryl sulfone corresponding to the sesquiterpene part and an allyl bromide corresponding to the side chain in $(-)$ -3.^{[5](#page-10-0)} This synthesis made it possible to determine the absolute structure of $(-)$ -3.^{[5](#page-10-0)} Meanwhile, the synthesis of $(+)$ -3 from the natural product sclareol was carried out via carbon–carbon bond formation at the dotted line b ([Scheme 1\)](#page-1-0) between an allyl bromide part, corresponding to the left-hand side of $(-)$ -3, and an aryl part.^{[11](#page-10-0)} Our synthetic plan is shown in Scheme 4; this also involves carbon–carbon bond formation at the dotted line b. In this way we attempted to improve the coupling yield, since the yield in previous case^{[11](#page-10-0)} was 26% .

In order to carry out a Stille coupling between allyl triflate (10R)-25a, allyl carbonate (10R)-25b or allyl trifluoroacetate $(10R)$ -25c and aryl stannane congener 26, derived from the previously reported aryl bromide congener 27 ,^{[11](#page-10-0)}, the synthesis of $(10R,13E)$ -allyl alcohol congener 16 from $(8aR)$ -7 was carried out in the same way as the preparation of $(10S,13E)$ -16 from $(8aS)$ -7 ([Scheme 3](#page-2-0)). Treatment of $27¹¹$ $27¹¹$ $27¹¹$ with tert-BuLi followed by the addition of *n*-Bu₃SnCl gave the desired stannane congener 26 in 62% yield. A Stille coupling reaction between $(10R)$ -25a, $(10R)$ -25b or $(10R)$ -25c and aryl stannane congener 26 in the presence of Pd catalyst was carried out, and results are shown in [Table 1](#page-4-0).

When the three substrates were individually subjected to Stille coupling using tetrakis(triphenyl-phophine)palla- $\dim(0)$ (Pd(Ph₃P)₄) or tris(dibenzylideneacetone)dipalla- $\dim(0)$ –chloroform adduct $[Pd_2(dba)_3$ ·CHCl₃] as a Pd catalyst, no reaction occurred as shown in entries 1–4 and 6. When the reaction of allyl carbonate 25b and 26 was carried out using $Pd_2(dba)$ ₃ CHCl₃ and LiCl as an additive at 100 °C, a 1:1 mixture of the coupled products $(2'E)$ -29 and $(2'Z)$ -29 was obtained in 44% overall yield after deprotection of the tetrahydropyranyl group (entry 5). The E/Z ratio was calculated based on the NMR integrated values of the olefinic proton (δ 5.30 (t) and 5.24 (t)). In contrast, when the reaction of allyl trifluoroacetate 25c and 26 was carried out using $Pd_2(dba)_3$ CHCl₃ and CuI as an additive at rt, a ca. 7:1 mixture $[(2'E)-29/(2'Z)-1]$

Scheme 4. Reagents and conditions: (a) (1) PBr₃/pyridine/Et₂O; (2) methyl acetoacetate/'BuOK/DMSO; (3) 2M NaOH/MeOH; (b) (1) (EtO)₂P(O)CH₂COOMe/NaH/THF; (2) (Bu)₂AIH/toluene; (3) separation; (c) Tf₂O/pyridine; (d) ClCOOEt/pyridine; (e) (CF₃CO)₂O/2,6-lutidine/ CH_2Cl_2 ; (f) (1) 'BuLi/THF; (2) Bu₃SnCl; (g) 26/Pd₂(dba)₃·CHCl₃/LiCl/DMF or 26/Pd₂(dba)₃·CHCl₃/CuI/DMF; (h) p-TsOH/MeOH or PPTS/MeOH; (i) MnO_2 ; (j) NaClO₂/2-methyl-2-butene/NaH₂PO₄/^{*I*}BuOH/H₂O; (k) (1) 6 M HCl/THF; (2) separation.

Table 1. Stille coupling

$(10R)$ 25a or 1 (2 E) 29 (2 E) 28 p-TsOH / MeOH or 26 / Pd catalyst $(13E)$ 16 \rightarrow $(10R)$ 25b or and and DMF PPTS / MeOH (2 Z) 28 (2 Z) 29 $(10R)$ 25c						
Entry	Substrate	Catalyst	Additive	Solvent	Conditions	$(2'E)$ -29 and $(2'Z)$ -29 yield ^a $(\%$, E:Z)
	$(10R) - 25a$	$Pd(Ph_3P)_4$	CuI	DMF	rt, 7 d	NR^b
	$(10R) - 25a$	$Pd(Ph_3P)_4$	LiC1	DMF	40 °C, 4 d	NR
	$(10R) - 25b$	$Pd(Ph_3P)_4$	CuI	DMF	$100 \degree C$, 4 d	NR
4	$(10R) - 25b$	$Pd_2(dba)$ ₃ ·CHCl ₃	CuI	DMF	rt, 6 d	NR
	$(10R) - 25b$	$Pd_2(dba)$ ₃ ·CHCl ₃	LiCl	DMF	$100 °C$, 4 h	44 $(E.Z = 1:1)$
6	$(10R) - 25c$	$Pd(Ph_3P)4$	CuI	DMF	rt, 24 h	NR.
	$(10R)$ -25c	$Pd_2(dba)$ ₃ ·CHCl ₃	CuI	DMF	rt, 24 h	54 $(E:Z = 7:1)$

^a Overall yield from $(13E)$ -16.
^b No reaction.

 $29 = 7:1$ of the coupled products was obtained in 54% overall yield (entry 7). The $2'E$ -geometry of the major product $(2'E)$ -29 was confirmed by NOE enhancement (4.4%) between the C(3')-methyl group and the C(1')-methylene group. Stille coupling between the same (E) -allyl carbonate congener¹² as $25b$ and pyridine-containing stannane^{[12](#page-10-0)} in the presence of $Pd_2(dba)$ ₃ and LiCl in DMF was reported to give a ca. 2.5:1 mixture of the coupled products $(E:Z = \sim 2.5:1)$, from which the desired (E) -form was obtained in 55% yield.^{[12](#page-10-0)} Manganese(IV) oxide $(MnO₂)$ oxidation of this 7:1 mixture gave a ca. 8:1 mixture of the corresponding aldehydes $(2'E)$ -30 and $(2'Z)$ -30 in 92% yield. Oxidation of the aldehyde mixture in tert-BuOH with NaClO₂ in the presence of 2-methyl-2butene and $NaH₂PO₄$ gave a 9:1 mixture of the corresponding carboxylic acids 31 in 53% yield, which was treated with 6 M aqueous HCl to afford a 9:1 mixture of the $(2'E)$ - and $(2'Z)$ -natural products 3. Finally, this mixture was subjected to preparative HPLC to afford $(-)$ -3 $\{[\alpha]_{\text{D}}^{24} = -46.7$ (c 0.17, CHCl₃)} in 69% yield. The spectral data (${}^{1}H$ and ${}^{13}C$ NMR) of synthetic (-)-3 were identical to those of the reported compound^{[3](#page-10-0)} including the specific rotation $\{[\alpha]_{\text{D}}^{22} = -46.0 \ (c \ 0.5, \text{CHCl}_3)\}.^3$

5. Conclusion

Two enantiomers $(8aR)$ -7 and $(8aS)$ -7 of bicyclofarnesol were synthesized from the enzymatic resolution products 2-ethylene acetal alcohol (8aR)-5 (98% ee) and 2-ethylene acetal acetate $(8aS)$ -6 (>99% ee), respectively. The formal synthesis of $(+)$ -wiedendiol 1 was achieved by the coupling reaction of an ate complex derived from 1,2,4-trimethoxybenzene with allyl bromide (8aS)-8 derived from (8aS)-7. The total synthesis of $(+)$ -norsesterterpene diene ester 2 was achieved based on the synthesis of $(13E, 10S)$ - α, β unsaturated aldehyde 12, derived from (8aS)-7, followed by selective construction of the (3E,5E)-diene moiety including a $C(2)$ stereogenic centre in $(+)$ -2. The total synthesis of $(-)$ -subersic acid 3 was carried out based on the Stille coupling between allyl trifluoroacetate congner 25c derived from $(8aR)$ -7, corresponding to the diterpene part, and aryl stannane congener 26 in the presence of a Pd catalyst and CuI as an additive.

6. Experimental

6.1. Methods and results

All melting points were measured on a Yanaco MP-3S micro melting point apparatus and are uncorrected. ¹H and ¹³C NMR spectra were recorded on JEOL AL 400 spectrometer in $CDCl₃$. Carbon substitution degrees were established by DEPT pulse sequence. The fast atom bombardment mass spectra (FAB MS) were obtained with JEOL JMS 600H spectrometer. IR spectra were recorded with a JASCO FT/IR-300 spectrometer. The preparative HPLC systems were composed of a detector (SPD-M10 AVP (SHIMADZU)) and a pump (PU-980 (JASCO)). HPLC analysis conditions were as follows; column: YMC ODS-A $(4.6 \times 250 \text{ mm})$, solvent: 90% MeOH including 0.06% TFA, flow rate: 1 mL/min. Optical rotations were measured with a JASCO DIP-370 digital polarimeter. All evaporations were performed under reduced pressure. For column chromatography, silica gel (Kieselgel 60) was employed.

6.2. (-)-[(4aR,8aR)-2,5,5,8a-Tetramethyl-3,4,4a,5,6,7,8,8aoctahydronaphthalen-1-yl]methanol 7

(i) To a suspension of NaH (55% in mineral oil) in THF (100 mL) was added a solution of $(8aR)$ -4 $(11.0 g,$ 43 mmol) in THF (10 mL) at 0 \degree C and the reaction mixture was stirred for 1 h at 80 $^{\circ}$ C. To the above reaction mixture was added diethyl chlorophosphate (9.02 g, 52.3 mmol) at 0° C, and the reaction mixture was stirred for 7 h at rt. The reaction mixture was diluted with brine and extracted with Et₂O. The organic layer was dried over MgSO₄ and evaporated to give a crude oil, which was chromatographed on silica gel (400 g, n-hexane/AcOEt = 1:1) to give the reported enol phosphonate $(14.89 \text{ g}, 88\%)$ as a colourless oil. $[\alpha]_D^{25} = -61.0$ (c 1.02, CHCl₃); ¹H NMR spectra were identical with those of the reported data.^{[3](#page-10-0)} (ii) To a suspension of CuI (22.0 g, 115 mmol) in Et₂O (50 mL) was added dropwise a $1.2 M$ MeLi in Et₂O solution $(193 \text{ mL}, 231.6 \text{ mmol})$ at -78 °C and the reaction mixture was stirred for 30 min at the same temperature. A solution of the above enol phosphonate (14.89 g) in Et₂O (50 mL) was added dropwise to the above $Me₂CuLi$ solution at

 -78 °C and the reaction mixture was stirred for 12 h at 0 °C. The reaction mixture was diluted with 10% aqueous NH4Cl and filtered with the aid of Celite. The filtrate was extracted with $Et₂O$ and dried over MgSO₄. Evaporation of the organic solvent gave a crude oil, which was chromatographed on silica gel (200 g, *n*-hexane/AcOEt = 50:1) to give the reported α , β -unsaturated ester (8.346 g, 87%) as a colourless oil. $[\alpha]_D^{24} = -93.4$ (c 1.14, CHCl₃); ¹H NMR spectra were identical with those of the reported data.^{[3](#page-10-0)} (iii) To a solution of the above α , β -unsaturated ester (8.346 g, 33.4 mmol) was added 1 M diisobutylaluminium hydride (Dibal) in toluene solution (80 mL, 80 mmol) at -78 °C and the reaction mixture was stirred for 5 h at the same temperature. MeOH (80 mL) was added to the reaction mixture at -20 °C. The reaction mixture was diluted with $2 M$ aqueous HCl, extracted with $Et₂O$ and dried over MgSO4. Evaporation of the organic solvent gave a crude oil, which was chromatographed on silica gel (300 g, *n*-hexane/AcOEt = 20:1) to give the reported $(8aR)$ -cyclofarnesol 7 (7.188 g, 97%). $[\alpha]_D^{24} = -110.0$ (c $(0.3, \tilde{CHCl}_3)$; ¹H NMR spectra were identical with those of the reported data.^{[3](#page-10-0)}

6.3. (+)-[(4aS,8aS)-2,5,5,8a-Tetramethyl-3,4,4a,5,6,7,8,8aoctahydronaphthalen-1-yl]methanol 7

 $(8a)$ -Cyclofarnesol 7 was synthesized from $(8a)$ -4 in 72% overall yield in the same way as for preparation of $(8aR)$ -7 from (8aR)-4. (8aS)-7: $[\alpha]_D^{24} = -110.0$ (c 0.15, CHCl₃). ¹H NMR spectra of (8aS)-7 were identical with those of $(8aR) - 7.$

6.4. (+)-1,2,4-Trimethoxy-3-[5'S,10'S,8'(9')-drimen-11'yl]benzene 11

(i) To a solution of $(8aS)$ -cyclofarnesol 7 $(0.504 g,$ 2.26 mmol) and pyridine $(0.190 \text{ g}, 2.4 \text{ mmol})$ in Et₂O (5 mL) was added phosphorus tribromide (PBr₃; 0.25 mL, 2.6 mmol) at 0° C and the reaction mixture was stirred for 10 min. The reaction mixture was diluted with brine and extracted with $Et₂O$. The organic layer was dried over $MgSO_4$ and evaporated to give crude 8 (0.648 g), which was used for the next reaction without further purification. (ii) To a solution of 1,2,4-trimethoxybenzene $9(0.946 g,$ 5.6 mmol) and TMEDA (5 mL, 33 mmol) in Et_2O (10 mL) was added tert-BuLi (1.64 M in pentane solution, 3.5 mL, 5.7 mmol) at -78 °C and the reaction mixture was stirred for 1 h at 0° C. (iii) To dry CuCN (0.503 g, 5.6 mmol) was added the above lithium anion solution at 0° C and the reaction mixture was stirred for 1.5 h at room temperature. A solution of crude 8 in Et₂O (10 mL) was added to the generated ate complex 10 and the whole mixture was stirred for 1.5 h at room temperature. The reaction mixture was diluted with H_2O and filtered with the aid of Celite after which the filtrate was extracted with $Et₂O$. The organic layer was washed with brine and dried over MgSO4. Evaporation of the organic solvent gave a residue, which was chromatographed on silica gel (30 g) to give bromide 8 (0.120 g, 26% overall yield from (S) cyclofarnesol) from *n*-hexane elution and 11 (0.482 g, 56% overall yield from (S) -cyclofarnesol) from *n*-hexane/ $AcOE = 100:1$ elution. A part of 11 was crystallized from

MeOH to afford colourless prism $(10'S)$ -11. $(+)$ - $(10'S)$ -11: mp 53–55 °C, $[\alpha]_D^{22} = +69.7$ (c 1.71, CHCl₃); IR (neat): 2938, 1591, 1476, 1252, 1095, 719 cm⁻¹; ¹H NMR: δ 0.80 (3H, s), 0.85 (3H, s), 0.92 (3H, s), 1.09–1.16 (3H, m), 1.31–1.60 (5H, m), 1.47 (3H, s), 1.88 (1H, br d, $J = 13.5$ Hz), 1.99–2.03 (2H, m), 3.37 (1H, d, $J = 16$ Hz), 3.48 (1H, d, $J = 16$ Hz), 3.72 (3H, s), 3.72 (3H, s), 3.79 (3H, s), 6.49 (1H, d, $J = 9$ Hz), 6.67 (1H, d, $J = 9$ Hz). ¹³C NMR: δ 19.2 (t), 19.2 (t), 20.1 (q), 20.5 (q), 21.8 (q), 23.3 (t), 33.3 (s), 33.5 (q), 34.8 (t), 36.8 (t), 39.6 (s), 41.8 (t), 51.9 (d), 56.0 (q), 56.2 (q), 60.1 (q), 105.6 (d), 109.3 (d), 126.1 (s), 126.4 (s), 138.4 (s), 147.3 (s), 148.3 (s), 152.5 (s). Anal. Calcd for $C_{24}H_{36}O_3$: C, 77.38; H, 9.74. Found: C, 77.20; H, 9.72.

6.5. 14,15-Bisnor-[8(9),5S,10S]-labdaen-13-one 14

(i) To a solution of the crude bromide $(8aS)$ -8 $(2.56g)$ obtained from (8aS)-cyclofarnesol 7 (2.04 g, 9.17 mmol) and methyl acetoacetate (5.34 g, 46 mmol) in DMSO (20 mL) was added *tert*-BuOK $(1.42 \text{ g}, 13.5 \text{ mmol})$ and whole mixture was stirred for 12 h at 60 \degree C. The reaction mixture was diluted with brine and extracted with $Et₂O$. The organic layer was dried over $MgSO₄$ and evaporated to give a residue, which was chromatographed on silica gel (50 g, *n*-hexane/AcOEt = 10:1) to give the α -substituted methyl acetoacetate congener (1.33 g) from *n*-hexane/ $AcOE = 100:1$ elution. (ii) A mixture of the above congener (1.33 g) and aqueous 2 M NaOH solution (10 mL) was stirred for 3 h at 100 °C. The reaction mixture was evaporated to give a residue, which was diluted with brine and extracted with $Et₂O$. The organic layer was dried over $MgSO₄$ and evaporated to give a residue, which was chromatographed on silica gel (50 g, *n*-hexane/AcOEt = 50:1) to give a colourless oil $(5S,10S)$ -14 $[0.98 \text{ g}, 40\%$ overall yield from (8aS)-7]. (5S,10S)-14: $[\alpha]_D^{24} = +74.3$ (c 1.12, CHCl₃); IR (neat): 1715 cm^{-1} ; ¹H NMR: δ 0.80 (3H, s), 0.85 (3H, s), 0.91 (3H, s), 1.04–1.10 (3H, m), 1.34–1.49 (3H, m), 1.50 (3H, s), 1.55–1.65 (2H, m), 1.75 (1H, br d, $J = 11$ Hz), 1.89-1.99 (2H, m), 2.01-2.15 (1H, m), 2.10 (3H, s), 2.24–2.30 (1H, m), 2.43–2.49 (2H, m). 13C NMR: δ 19.1 (t), 19.1 (t), 19.5 (q), 20.1 (q), 21.7 (t), 21.8 (q), 29.9 (q), 33.4 (s), 33.4 (q), 33.7 (t), 37.0 (s), 39.2 (s), 41.8 (t), 44.7 (t), 52.0 (d), 126.4 (s), 139.1 (s), 208.6 (s). Anal. Calcd for $C_{18}H_{30}O$: C, 82.38; H, 11.52. Found: C, 82.24; H, 11.63. FAB MS m/z : 285 (M⁺+Na).

6.6. [8(9),5S,10S,13E]-Labdadien-15-ol 16 and [8(9),5S,10S,13Z]-labdadien-15-ol 16

(i) 55% NaH in oil (0.888 g, 20 mmol) was washed with n hexane and methyl diethylphosphonoacetate (5.37 g, 25.6 mmol) was added to a suspension of the above NaH in THF (80 mL). The reaction mixture was stirred for 1 h at room temperature and a solution of (5S,10S)-14 (1.24 g, 4.7 mmol) in THF (20 mL) was added to the above reaction mixture. After the whole mixture was stirred for 12 h at room temperature, it was diluted with brine at 0° C and extracted with Et₂O. The organic layer was dried over MgSO4 and evaporated to give a residue, which was chromatographed on silica gel (50 g, *n*-hexane/AcOEt = 100:1) to give a 7:2 mixture of α , β -unsaturated esters 15

(1.49 g) as a colourless oil. (ii) To a solution of the above mixture (1.49 g) in toluene (30 mL) was added 1 M diisobutylaluminium hydride (Dibal) in toluene solution $(15 \text{ mL}, 15 \text{ mmol})$ at -78 °C and the mixture was stirred for 10 min at the same temperature. To a reaction mixture at -20 °C was added MeOH (30 mL) and whole mixture was diluted with 2 M aqueous HCl, extracted with $Et₂O$. The organic layer was dried over MgSO₄ and evaporated to give a residue, which was chromatographed on silica gel (50 g, *n*-hexane/AcOEt = 10:1) to afford (13Z)-16 (0.276 g, 20% overall yield from 14) as a colourless oil and $(13E)$ -16 $(0.947 g, 70\%$ overall yield from 14) as a colourless oil in elution order. (13Z)-16: $[\alpha]_D^{23} = +71.5$ (c 0.99, CHCl₃); IR (neat): 3326, 1666 cm⁻¹; ¹H NMR: δ 0.81 (3H, s), 0.87 (3H, s), 0.92 (3H, s), 1.08–1.23 (4H, m), 1.35–1.69 (5H, m), 1.58 (3H, s), 1.77 (3H, s), 1.77–2.10 (7H, m), 4.13 (1H, d, $J = 7$ Hz), 5.36 (1H, t, $J = 7$ Hz). ¹³C NMR: δ 19.1 (t), 19.1 (t), 19.6 (q), 20.2 (q), 21.7 (q), 23.4 (q), 27.0 (t), 32.9 (t), 33.3 (q), 33.3 (s), 33.6 (t), 37.0 (t), 39.0 (s), 41.8 (t), 51.8 (d), 59.3 (t), 123.7 (d), 126.3 (s), 140.2 (s), 140.9 (s). HREI-MS: m/z : calcd for C₂₀H₃₄O, 290.2610; found, 290.2611. $(13E)$ -16: $\left[\alpha\right]_{\text{D}_1}^{25} = +67.8$ (c) 1.11, CHCl₃); IR (neat): 3328, 1665 cm⁻¹;¹¹¹H NMR: δ 0.81 (3H, s), 0.86 (3H, s), 0.92 (3H, s), 1.07–1.18 (3H, m), 1.32–1.48 (4H, m), 1.52–1.69 (2H, m), 1.55 (3H, s), 1.69 $(3H, s)$, 1.80 (1H, br d, $J = 12.5$ Hz), 1.89–2.12 (6H, m), 4.14 (2H, d, $J = 7$ Hz), 5.41 (1H, br t, $J = 7$ Hz). ¹³C NMR: δ 16.5 (q), 19.2 (t), 19.7 (t), 19.7 (t), 20.3 (q), 21.9 (q), 26.9 (t), 33.4 (s), 33.4 (q), 33.8 (t), 37.1 (t), 39.2 (s), 40.3 (t), 41.9 (t), 52.0 (d), 59.5 (t), 122.5 (d), 125.9 (s), 140.0 (s), 140.6 (s). Anal. Calcd for $C_{20}H_{34}O$: C, 82.69; H, 11.80. Found: C, 82.25; H, 11.80.

6.7. [8(9),5S,10S,13E]-Labdadien-15-al 12

To a solution of $(13E)$ -16 $(0.284 \text{ g}, 0.98 \text{ mol})$ in CH₂Cl₂ (10 mL) was added Dess–Martin periodinane (0.511 g, 1.2 mmol) at 0° C and the mixture was stirred for 1 h at the same temperature. The reaction mixture was diluted with 7% aqueous NaHCO₃ and extracted with CH₂Cl₂. The organic layer was dried over $MgSO₄$ and evaporated to give a residue, which was chromatographed on silica gel (5 g, *n*-hexane/AcOEt = 20:1) to give $(10S, 13E)$ -12 $(0.253 \text{ g}, 89\%)$ as a colourless oil. $(10S, 13E)$ -12: $[q]_{\text{D}}^{23}$ +66.9 (c 1.08, CHCl₃); IR (neat): 1675, 1633 cm⁻¹;¹¹H NMR: d 0.81 (3H, s), 0.86 (3H, s), 0.92 (3H, s), 1.07–1.17 (2H, m), 1.32–1.65 (5H, m), 1.55 (3H, s), 1.77 (1H, br d, $J = 12.5$ Hz), 1.90–2.07 (4H, m), 2.12–2.27 (3H, m), 2.17 $(3H, s)$, 5.88 (1H, dt, $J=1$, 8 Hz), 9.97 (1H, d, $J = 8$ Hz). ¹³C NMR: δ 17.8 (q), 19.2 (t), 19.2 (t), 19.6 (q), 20.3 (q), 21.8 (q), 26.1 (q), 33.4 (q), 33.4 (s), 33.7 (t), 37.1 (t), 39.2 (s), 41.4 (t), 41.8 (t), 51.9 (d), 126.6 (d), 126.8 (s), 139.0 (s), 164.3 (s), 191.0 (d). Anal. Calcd for $C_{20}H_{32}O$: C, 83.27; H, 11.18. Found: C, 82.87; H, 11.14.

6.8. (R)-3-Benzothiazolylsulfanyl-1-tert-butyldiphenylsilyloxy-2-methylpropane 13a

(i) To a solution of commercially available (S) -17 (1.0 g, 8.5 mmol) in DMF (20 mL) was added tert-butyliphenylsilyl chloride (TBDPSCl, 2.74 g, 10 mmol) and imidazole (0.68 g, 10 mmol) at 0° C and the whole mixture was stirred for 2 h at rt. The reaction mixture was diluted with brine and extracted with $Et₂O$. The organic layer was dried over MgSO4 and evaporated to give a residue, which was chromatographed on silica gel (90 g, *n*-hexane/AcOEt = 50:1) to give the corresponding silyl ether 18 $(2.739 \text{ g}, 90\%)$. (S)-Silyl ether 18: $[\alpha]_D^{24} = +17.0$ (c 1.31, CHCl₃); ¹H NMR: δ 1.02 (9H, s), 1.14 (3H, d, $J = 7$ Hz), 2.67–2.72 $(1H, m)$, 3.67 (3H, s), 3.71 (1H, dd, $J = 9.8$, 5.8 Hz), 3.81 (1H, dd, $J = 9.8$, 6.8 Hz), 7.34–7.43 (6H, m), 7.61–7.66 $(4H, m)$. (ii) A mixture of silyl ether $(2.685 g, 7.5 mmol)$ and $LiBH₄$ (0.804 g, 36 mmol) in THF (30 mL) was stirred for 6 h at 50 \degree C. To the reaction mixture was added acetone (5 mL) at 0° C and the whole mixture was diluted with brine and extracted with $Et₂O$. The organic layer was dried over $MgSO₄$ and evaporated to give a residue, which was chromatographed on silica gel (60 g, *n*-hexane/AcOEt = 5:1) to give a colourless oil (S) -19 (2.440 g, 98%). (S) -19: $[\alpha]_{\text{D}}^{25} = +5.2$ (c 1.0, CHCl₃); ¹³C NMR: δ 13.3, 19.3, 27.0 $(3\tilde{C})$, 37.4, 67.6, 68.7, 127.6 (4C), 129.6 (2C), 133.0 (2C), 135.0, 135.4 (4C). (iii) To a solution of alcohol (1.0 g, 3.0 mmol) in THF (20 mL) was added Ph_3P (0.963 g, 3.7 mmol), 2-mercaptobenzothiazole (BTSH, 0.642 g, 3.8 mmol) and 2.2 M diethylazodicarboxylate in toluene solution (1.5 mL, 3.3 mmol) at 0° C and the whole mixture was stirred for 1 h at rt. The reaction mixture was diluted with brine and extracted with $Et₂O$. The organic layer was dried over $MgSO₄$ and evaporated to give a residue. which was chromatographed on silica gel $(50 \text{ g}, n\text{-hexane})$ $ACOEt = 20:1$) to give the corresponding sulfide 20a (1.19 g, 82%) as a colourless oil. Sulfide 20a: $[\alpha]_D^{22} = +7.3$ $(c \ 1.05, \ CHCl₃)$; ¹H NMR: δ 1.44 (9H, s), 1.45 (3H, d, $J = 7.8$ Hz), 2.52–2.61 (1H, m), 3.64 (1H, dd, $J = 13$, 7 Hz), 3.95–4.02 (2H, m), 4.04–4.10 (1H, m), 7.61–7.81 $(8H, m)$, $8.02-8.06$ $(4H, m)$, 8.10 $(1H, dd, J = 7.3,$ 0.6 Hz), 8.20 (1H, dd, $J = 7.3$, 0.6 Hz). ¹³C NMR: δ 16.5, 19.5, 27.0 (3C), 36.1, 37.2, 67.2, 120.7, 121.3, 123.9, 125.8, 127.5 (4C), 129.5 (2C), 133.4 (2C), 135.0, 135.4 (4C), 153.1, 167.3. Anal. Calcd for $C_{27}H_{31}NOS_2Si$: C, 67.88; H, 6.54; N, 2.93. Found: C, 67.38; H, 6.53; N, 2.86. FAB MS m/z : 478 (M⁺+1). (iv) To a solution of sulfide (20a, 1.21 g, 2.3 mmol) in EtOH (15 mL) was added $Mo_7O_{24}(NH_4)_6$ ²H₂O (0.295 g, 0.24 mmol) and 30% H₂O₂ (1.8 mL) at 0°C and the whole mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with 10% aqueous $Na₂S₂O₃$ and extracted with $Et₂O$. The organic layer was washed with brine and dried over MgSO4. The organic layer was evaporated to give a crude residue, which was chromatographed on silica gel (30 g, *n*-hexane/AcOEt = 10:1) to afford **13a** (0.959 g, 80%) as a colourless oil. Compound 13a: $[\alpha]_{D}^{24} = +21.7$ (c) 0.91, CHCl₃); ¹H NMR: δ 0.98 (9H, s), 1.11 (3H, d, $J = 6.8$ Hz), 2.39–2.50 (1H, m), 3.29 (1H, dd, $J = 14.5$, 8.6 Hz), 3.45 (1H, dd, $J = 10$, 7 Hz), 3.64 (1H, dd, $J = 10$, 5 Hz), 3.93 (1H, dd, $J = 14.5$, 4 Hz), 7.28–7.40 (6H, m), 7.53–7.63 (6H, m), 7.98–8.00 (1H, m), 8.16– 8.19 (1H, m). ¹³C NMR: δ 16.8, 19.3, 26.9 (3C), 31.7, 57.7, 67.1, 122.2, 125.4, 127.4, 127.5 (4C), 127.8, 129.6 (2C), 133.0 (2C), 135.3 (4C), 136.7, 152.5, 166.2. Anal. Calcd for $C_{27}H_{31}NO_3S_2Si$: C, 63.61; H, 6.13; N, 2.74. Found: C, 63.09; H, 6.31; N, 2.75. FAB MS m/z: 532 $(M^+ + Na)$.

6.9. (R)-3-(1'-Phenyl-1'H-tetrazole-5'-sulfanyl)-1-tert-butyldiphenylsilyloxy-2-methylpropane 13b

(i) To a solution of alcohol (S) -19 (1.15 g, 3.5 mmol) in THF (20 mL) was added $Ph_3P (1.10 \text{ g}, 4.2 \text{ mmol})$, 1-phenyl-1H-tetrazole-5-thiol (PTSH, 0.750 g, 4.2 mmol) and 2.2 M diethylazodicarboxylate in toluene solution (2 mL, 4.4 mmol) at 0° C and whole mixture was stirred for 3 h at rt. The reaction mixture was diluted with 2 M aqueous NaOH and extracted with $Et₂O$. The organic layer was washed with brine and dried over MgSO₄. Evaporation of the organic solvent gave a residue, which was chromatographed on silica gel (50 g, *n*-hexane/AcOEt = 10:1) to afford the corresponding sulfide $20b$ (1.64 g, 96%) as a colourless oil. Sulfide 20b; $[\alpha]_D^{23} = -2.5$ (c 0.82, CHCl₃);
¹H NMP: δ 1.03.(0H $_6$) 1.06.(3H d $I = 6.8$ Hz) 2.15 ¹H NMR: δ 1.03 (9H, s), 1.06 (3H, d, $J = 6.8$ Hz), 2.15– 2.23 (1H, m), 3.40–3.59 (3H, m), 3.67 (1H, dd, $J = 10.2$, 4.8 Hz), 7.31–7.42 (6H, m), 7.51–7.56 (5H, m), 7.61–7.65 (4H, m). ¹³C NMR: δ 16.5, 19.4, 27.0 (3C), 35.6, 36.9, 67.0, 123.7 (2C), 127.5 (4C), 129.5 (2C), 129.6 (2C), 129.8, 133.2, 133.3, 133.6, 135.4 (4C), 154.5. Anal. Calcd for $C_{27}H_{32}N_4OSSi$: C, 66.35; H, 6.60; N, 11.46. Found: C, 6.30; H, 6.62; N, 11.33. FAB MS m/z : 489 (M⁺+1). (ii) To a solution of sulfide $(1.23 \text{ g}, 2.5 \text{ mmol})$ in EtOH (15 mL) was added $Mo_7O_{24}(NH_4)_6$ ⁴H₂O (0.375 g, 0.3 mmol) and 30% H_2O_2 (1.8 mL) at 0 °C and the whole mixture was stirred for 4 h at room temperature. The reaction mixture was diluted with 10% aqueous $Na₂S₂O₃$ and extracted with $Et₂O$. The organic layer was washed with brine and dried over MgSO4. The organic layer was evaporated to give a crude residue, which was chromatographed on silica gel (30 g, *n*-hexane/AcOEt = 15:1) to afford 13b (0.774 g, 59%) as a colourless oil. Compound 13b: $[\alpha]_{\text{D}}^{24} = +9.2$ (c 0.77, CHCl₃); ¹H NMR: δ 1.05 (9H, s), 1.14 (3H, d, $J = 6.8$ Hz), 2.46–2.55 (1H, m), 3.52 (1H, dd, $J = 10$, 6 Hz), 3.56 (1H, dd, $J = 14$, 8 Hz), 3.72 (1H, dd, $J = 10$, 5 Hz), 4.12 (1H, dd, $J = 10$, 5 Hz), 7.34–7.43 (6H, m), 7.61–7.67 (9H, m). ¹³C NMR: δ 16.9, 19.4, 26.9 (3C), 31.3, 60.4, 67.0, 125.0 (2C), 127.7 (4C), 129.5 (2C),, 129.7 (2C), 131.3 (2C), 132.9 (2C), 135.4 (4C), 153.8. FAB MS m/z : 543 (M⁺+Na).

6.10. Modified Julia's coupling of (10S)-12 and 13a: synthesis of $(18S,3E)$ -21

To a solution of (10S)-12 (0.251 g, 0.87 mmol) and 13a $(0.460 \text{ g}, 0.9 \text{ mmol})$ in THF (5 mL) was added lithium bis(trimethylisilyl)amide (1 M solution in THF, 1.8 mL, 1.8 mmol) at -78 °C under an argon atmosphere and the whole mixture was stirred for 1 h at the same temperature. The reaction mixture was diluted with brine and extracted with $Et₂O$. The organic layer was dried over $MgSO₄$. Evaporation of the organic solvent gave a crude product, which was chromatographed on silica gel (10 g, *n*-hexane/ AcOEt = 50:1) to give a 6.2:1 (*E*:*Z*) mixture (0.372 g, 73%) of $(3E)$ -21 and $(3Z)$ -21 as a colourless oil. $(3E)$ -21 (major product); ¹H NMR: δ 0.82 (3H, s), 0.87 (3H, s), 0.93 (3H, s), 1.04 (9H, s), 1.04 (3H, d, $J = 6.8$ Hz), 1.08– 1.87 (7H, m), 1.57 (3H, s), 1.74 (3H, s), 1.89–2.14 (6H, m), 2.39–2.47 (1H, m), 3.44–3.58 (2H, m), 5.47 (1H, dd, $J = 15$, 7 Hz), 5.78 (1H, d, $J = 11$ Hz), 6.24 (1H, dd, $J = 15, 11$ Hz), 7.33–7.41 (6H, m), 7.64–7.66 (4H, m). ¹³C

NMR: δ 15.4 (q), 16.8 (q), 17.0 (q), 19.3 (t), 19.5 (s), 19.7 (q), 20.3 (q), 21.9 (q), 27.0 (q, 3C), 27.1 (t), 33.8 (t), 37.1 (t), 39.2 (s), 39.8 (d), 40.7 (t), 41.9 (t), 52.0 (d), 60.4 (s), 65.9 (t), 68.8 (t), 119.4 (d), 124.0 (d), 124.8 (d), 125.8 (s), 126.3 (d), 127.4 (d, 4C), 129.3 (d), 132.2 (d), 133.9 (s), 134.3 (d), 135.5 (d, 2C), 137.8 (s), 139.7 (s), 140.2 (s). FAB MS m/z : 583 (M⁺+1).

6.11. Modified Julia's coupling of (10S)-12 and 13b: synthesis of $(18S,3E)$ -21

To a solution of $(10S)$ -12 $(0.225 g, 0.78 mmol)$ and 13b $(0.371 \text{ g}, 0.71 \text{ mmol})$ in THF (5 ml) was added lithium bis(trimethylisilyl)amide (1 M solution in THF, 1.5 mL, 1.5 mmol) at -78 °C under an argon atmosphere and the whole mixture was stirred for 3 h at the same temperature. The reaction mixture was diluted with brine and extracted with Et_2O . The organic layer was dried over MgSO₄. Evaporation of the organic solvent gave a crude product, which was chromatographed on silica gel $(10 \text{ g}, n\text{-hexane})$ AcOEt = 50:1) to give a 11:1 (*E*:*Z*) mixture (0.376 g, 83%) of $(3E)$ -21 and $(3Z)$ -21 as a colourless oil.

6.12. Norsesterterpene diene alcohol (18S,3E)-22

To a solution of $(18S,3E)$ -21 $(0.375g, 0.64g)$ mmol) in THF (5 mL) was added 1 M tetrabutylammonium fluoride (TBAF) THF solution (1 mL, 1 mmol) at rt, and the whole mixture was stirred for 1 h at the same temperature. The reaction mixture was diluted with brine and extracted with $Et₂O$. The organic layer was dried over MgSO₄. Evaporation of the organic solvent gave a crude product, which was chromatographed on silica gel (10 g, n-hexane/ AcOEt = 10:1) to give $(18S,3E)$ -22 $(0.185 g, 81\%)$ as a colourless oil. $(18S,3E)$ -22: $[\alpha]_D^{24} = +82.6$ (c 0.65, CHCl₃); IR (neat): 3361 cm⁻¹; ¹H NMR: δ 0.81 (3H, s), 0.86 (3H, s), 0.92 (3H, s), 1.01 (3H, d, $J = 6.8$ Hz), 1.05–1.84 (9H, m), 1.56 (3H, s), 1.77 (3H, s), 2.38–2.45 (1H, m), 3.39 (1H, dd, $J = 10$, 8 Hz), 3.50 (1H, dd, $J = 10$, 6 Hz), 5.41 (1H, d, $J = 15$, 8 Hz), 5.82 (1H, d, $J = 11$ Hz), 6.33 (1H, dd, $J = 15$, 11 Hz). ¹³C NMR: δ 16.6 (q), 16.7 (q), 19.1 (t), 19.5 (t), 20.1 (t), 21.7 (q), 26.8 (t), 33.3 (s), 33.3 (q), 33.6 (t), 37.0 (t), 39.1 (s), 40.1 (d), 40.5 (t), 41.8 (t), 51.9 (d), 67.4 (t), 123.6 (d), 126.0 (s), 128.0 (d), 133.6 (d), 139.0 (s), 140.2 (s). HREI-MS: calcd for $C_{24}H_{40}O$, 344.3080; found, 344.3068.

6.13. (+)-Norsesterterpene diene ester 2

(i) A mixture of $(18S,3E)$ -22 $(0.135 g, 0.39 mmol)$ and Dess–Martin reagent (0.198 g, 0.47 mmol) in CH_2Cl_2 (3 mL) was stirred at 0° C and the reaction mixture was stirred for 30 min. The reaction mixture was diluted with 10% aqueous Na₂CO₃ and extracted with Et₂O. The organic layer was washed with brine and dried over $MgSO₄$. Evaporation of the organic solvent gave a residue, which was chromatographed on silica gel $(15 \text{ g}, n\text{-hexane})$ AcOEt = 20:1) to afford aldehyde 23 (0.072 g, 53%). Compound 23: $[\alpha]_D^{26} = -44.3$ (c 0.78, CHCl₃); IR (KBr): 1696 cm^{-1} ; ¹H NMR: δ 0.81 (3H, s), 0.86 (3H, s), 0.92 $(3H, s)$, 1.21 $(3H, d, J = 6.9 Hz)$, 1.05–1.86 $(15H, m)$, 1.56 (3H, s), 1.78 (3H, s), 5.48 (1H, d, $J = 15$, 8 Hz), 5.85

(1H, d, $J = 11$ Hz), 6.30 (1H, d, $J = 15$, 11 Hz), 9.50 (1H, d, $J = 1.6$ Hz). ¹³C NMR: δ 13.8 (q), 17.0 (q), 19.2 (t, 2C), 19.7 (q), 20.3 (q), 21.9 (q), 27.0 (t), 33.4 (q), 33.5 (s), 33.8 (t), 37.1 (t), 39.2 (s), 40.6 (t), 41.9 (t), 50.4 (d), 52.0 (d), 123.2 (d), 126.0 (s), 126.3 (d), 130.1 (d), 139.9 (s), 140.5 (s), 201.2 (s). HREI-MS: calcd for $C_{24}H_{38}O$, 342.2913; found, 342.2918. (ii) To a solution of (18S,3E)- 23 (0.053 g, 0.15 mmol) and 2-methyl-2-butene (6 mL) in tert-BuOH (2 mL) was added NaClO₂ (0.144 g, 1.6 mmol) and NaH₂PO₄ (0.115 g, 0.96 mmol) in H₂O (0.5 mL) at rt and the whole mixture was stirred for 30 min at the same temperature. The reaction mixture was diluted with 2 M aqueous HCl and extracted with $Et₂O$. The organic layer was dried over MgSO₄. Evaporation of the organic solvent gave a crude product, which was chromatographed on silica gel (5 g, *n*-hexane/AcOEt = 3:1) to give a carboxylic acid (24, 0.055 g, quantitative yield) as a colourless oil. $(18S,3E)$ -24. IR (KBr): 3420, 1696 cm⁻¹; HREI-MS: calcd for $C_{24}H_{38}O_2$, 358.2872; found, 358.2888. (iii) This acid 24 was treated with CH_2N_2 –ether solution to give a crude oil, which was chromatographed on silica gel (10 g, *n*-hexane/ AcOEt = 50:1) to afford (+)-(18S,3E)-2 (0.019 g, 33%) as a colourless oil. (+)-(18S,3E)-2: $[\alpha]_D^{25} = +12.4$ (c 0.55, CHCl₃); ¹H NMR: δ 0.82 (3H, s), 0.88 (3H, s), 0.94 (3H, s), 1.12 (1H, dd, $J = 12.5$, 2 Hz), 1.12–1.20 (2H, m), 1.29 $(3H, d, J = 7 Hz)$, 1.34–1.67 (5H, m), 1.57 (3H, s), 1.78 $(3H, d, J = 1 Hz)$, 1.80–1.85 (1H, m), 1.91–2.13 (6H, m), 3.20 (1H, ddq, $J = 1, 7, 8$ Hz), 3.68 (3H, s), 5.63 (1H, dd, $J = 15$, 8 Hz), 5.84 (1H, d, $J = 11$ Hz), 6.34 (1H, ddd, $J = 15$, 11, 1 Hz). ¹³C NMR: δ 16.9, 17.6, 19.2 (2C), 19.7, 20.2, 21.8, 26.9, 33.4 (2C), 33.7, 37.1, 39.1, 40.6, 41.9, 43.2, 51.9, 52.0, 123.2, 125.9, 127.8, 129.5, 140.0 (2C), 175.0.

6.14. 14,15-Bisnor-[8(9),5R,10R]-labdaen-13-one 14

 $(5R,10R)$ -Methyl ketone 14 was synthesized from $(8aR)$ -7 in 37% overall yield in the same way as for preparation of (5S,10S)-14 from (8aS)-7. (5R,10R)-14: $[\alpha]_D^{24} = -82.0$ $(c \text{ } 1.11, \text{ } CHCl₃)$. ¹H NMR spectra of $(5R, 10R)$ -14 were identical with those of (5S,10S)-14.

6.15. [8(9),5S,10R,13E]-Labdadien-15-ol 16

 $(10R,13E)$ -Allyl alcohol 16 was synthesized from $(5R,10R)$ -14 in 45% overall yield in the same way as for preparation of (10S,13E)-16 from (5S,10S)-14. (10R,13E)-16: $[\alpha]_D^{25} =$ -71.2 (c 1.11, CHCl₃). ¹H NMR spectra of (10R,13E)-16 were identical with those of $(10S,13E)$ -16.

6.16. Tetrahydropyranyloxy derivative of (3-tributhylstannyl-4-methoxymethoxyphenyl)methanol

To a solution of the known aryl bromide congener $27¹¹$ (0.694 g, 2.1 mmol) in THF (30 mL) was added 1.6 M tert-BuLi in pentane solution (2.7 mL, 4.4 mmol) at -78 °C and the mixture was stirred for 1 h at -78 °C. Tributyltin chloride (n -Bu₃SnCl 1.77 g, 5.43 mmol) was added to the above mixture solution at -78 °C and whole mixture was stirred for 1 h at -78 °C. The reaction mixture was evaporated to a residue, which was diluted with H_2O and extracted with AcOEt. The organic layer was washed with brine and dried over MgSO₄. Evaporation of the organic solvent gave a residue, which was chromatographed on Florisil (20 g, *n*-hexane/AcOEt = 100:1) to afford 26 $(0.698 \text{ g}, 62\%)$ as a colourless oil. **26**; IR (neat): 1156 cm⁻¹; ¹H NMR: δ 0.86 (9H, t, $J = 7.3$ Hz), 0.96-1.08 (8H, m), 1.26–1.35 (6H, m), 1.48–1.75 (9H, m), 1.80–1.89 (1H, m), 3.44 (3H, s), 3.51–3.56 (1H, m), 3.90– 3.95 (1H, m), 4.42 (1H, d, $J = 11.4$ Hz), 4.68–4.69 (1H, m), 4.71 (1H, d, $J = 11.4$ Hz), 5.13 (2H, s), 7.02 (1H, d, $J = 8.5$ Hz), 7.27 (1H, dd, $J = 8.5$, 2.2 Hz), 7.34 (1H, d, $J = 2.2$ Hz). ¹³C NMR: δ 10.0 (t, 3C), 13.9 (q, 3C), 19.6 (t), 25.7 (t), 27.2 (t), 27.5 (t), 27.8 (t), 29.2 (t), 29.3 (t), 29.4 (t), 30.7 (t), 55.8 (q), 62.3 (t), 68.7 (t), 94.1 (t), 97.5 (d), 111.7 (d), 129.7 (d), 130.4 (s), 131.1 (s), 136.8 (d), 161.1 (s). Anal. Calcd for C₂₆H₄₆O₄Sn: C, 57.68; H, 8.56. Found: C, 57.48; H, 8.86. MALDI-TOF-MS m/z : 541 (M⁺).

6.17. Reaction of aryl stannane 26 and (10R,13E)-carbonate 25b

(i) A mixture of $(10S,13E)$ -16 $(0.195 g, 0.67 mmol)$ and ethyl chloroformate (0.364 g, 3.5 mmol) in pyridine (5 mL) was stirred at 0° C and the reaction mixture was stirred for 1 h. The reaction mixture was diluted with 7% aqueous $NaHCO₃$ and extracted with Et₂O. The organic layer was washed with 2 M aqueous HCl and brine and dried over MgSO4. Evaporation of the organic solvent gave a residue, which was chromatographed on silica gel (10 g, *n*-hexane/AcOEt = 100:1) to afford a carbonate 25b (0.217 g, 82%) as a colourless oil. Compound 25b: $[\alpha]_{\text{D}}^{25} = -65.1$ (c 1.05, CHCl₃); IR (neat): 1744 cm⁻¹; ¹H NMR: δ 0.81 (3H, s), 0.86 (3H, s), 0.91 (3H, s), 1.07–1.22 $(3H, m)$, 1.28 $(3H, t, J = 7 Hz)$, 1.35–1.48 $(3H, m)$, 1.52– 1.64 (2H, m), 1.55 (3H, s), 1.72 (3H, d, $J = 0.5$ Hz), 1.75– 1.82 (1H, m), 1.88–2.12 (6H, m), 4.17 (2H, dd, $J = 14$, 7 Hz), 4.62 (2H, d, $J = 7$ Hz), 5.37 (1H, dt, $J = 7$, 0.5 Hz). ¹³C NMR: δ 14.4 (q), 16.7 (q), 19.2 (t, 2C), 19.6 (q), 20.2 (q), 21.8 (q), 26.7 (t), 33.4 (q), 33.4 (q), 33.8 (t), 33.7 (t), 39.1 (s), 40.2 (t), 41.9 (t), 52.0 (d), 63.8 (t), 64.6 (t), 117.0 (d), 126.0 (s), 139.8 (s), 143.8 (s), 155.0 (s). EI-MS: m/z 362 (M⁺) (ii) To a solution of 25b (0.217 g, 0.60 mmol) in DMF (20 mL) was added 26 (0.659 g, 1.2 mmol), tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct $[Pd_2(dba)_3$ ^{CHCl₃, 0.037 g, 0.036 mmol]} and LiCl (0.085 g, 2 mmol) and the reaction mixture was stirred for 4 h at 100 $^{\circ}$ C. The reaction mixture was diluted with H_2O and extracted with Et_2O . The organic layer was washed with brine and dried over MgSO₄. Evaporation of the organic solvent gave a crude oil, which was chromatographed on silica gel (25 g, *n*-hexane/AcOEt = 100:1) to afford a mixture (0.400 g) of 26 and 28. (iii) To a solution of the above mixture in MeOH (10 mL) was added p-TsOH (0.309 g, 1.79 mmol) and the reaction mixture was stirred for 2 h at rt. The reaction mixture was diluted with H_2O (5 mL) and evaporated under reduced pressure to give a residue. This residue was diluted with H_2O and extracted with $Et₂O$. The organic layer was washed with brine and dried over MgSO4. Evaporation of the organic solvent gave a crude oil, which was chromatographed on silica gel (15 g, *n*-hexane/AcOEt = 5:1) to afford a 1:1 mixture (0.117 g, 44% overall yield from $(13E)$ -16) of $(2'E)$ -29 and $(2'Z)$ -29. The E/Z ratio was calculated based on the NMR analysis of integrated values due to the olefinic proton (δ 5.30 (t) and 5.24 (t)). Physical data of the desired $(2'E)$ -29 is shown in Section 6.19.

6.18. Reaction of aryl stannane 26 and $(10R,13E)$ -trifluoroacetate 25c

(i) To a solution of $(10S, 13E)$ -16 $(0.204 \text{ g}, 0.7 \text{ mmol})$ and in CH_2Cl_2 (5 mL) was added 2,6-lutidine (0.232 g, 2.2 mmol) and trifluoroacetic anhydride (TFAA, 0.252 g, 1.2 mmol) at -78 °C and the reaction mixture was stirred for 2 h at the same temperature. The reaction mixture was diluted with H₂O at 0° C and extracted with CH₂Cl₂. The organic layer was washed with 7% aqueous NaHCO₃ and dried over MgSO4. Evaporation of the organic solvent gave a crude 25c (0.287 g, quantitative yield), which was used for the next reaction without further purification. Compound 25c: $[\alpha]_D^{23} = -55.7$ (c 1.14, CHCl₃); IR (neat): 1784 cm⁻¹; ¹H NMR: δ 0.82 (3H, s), 0.87 (3H, s), 0.92 (3H, s), 1.09–1.21 (3H, m), 1.38–1.65 (5H, m), 1.58 (3H, s), 1.61–1.76 (1H, m), 1.55 (3H, s), 1.82 (3H, d, $J = 0.5$ Hz), 1.91–2.17 (6H, m), 4.82 (2H, d, $J = 7$ Hz), 5.36 (1H, dt, $J = 7$, 0.5 Hz). ¹³C NMR: δ 16.6 (q), 19.1 (t, 2C), 19.5 (q), 20.1 (q), 21.7 (q), 26.5 (t), 33.3 (q), 33.3 (s), 33.6 (t), 37.0 (t), 39.1 (s), 40.2 (t), 41.8 (t), 51.9 (d), 64.9 (t), 115.2 (d), 126.3 (s), 139.8 (s), 146.6 (s), 157.3 (s), 157.8 (s). HREI-MS: calcd for $C_{22}F_{3}H_{33}O_{2}$, 386.2433; found, 386.2447. (ii) To a solution of 25c (0.287 g) in DMF (3 mL) was added 26 (0.495 g, 0.92 mmol), $Pd_2(dba)$ ₃·CHCl₃ (0.041 g, 0.04 mmol) and CuI (0.008 g, 0.04 mmol) and the reaction mixture was stirred for 24 h at rt. The reaction mixture was diluted with $H₂O$ and extracted with AcOEt. The organic layer was washed with brine and dried over MgSO4. Evaporation of the organic solvent gave a crude oil, which was chromatographed on silica gel (30 g, *n*-hexane/AcOEt = 80:1) to afford a mixture (0.242 g) of **26** and **28**. (iii) To a solution of the above mixture in MeOH (5 mL) was added pyridinium p-toluenesulfonate (PPTS, 0.105 g, 0.4 mmol) and the reaction mixture was stirred for 8 h at rt. The reaction mixture was diluted with H_2O and extracted with Et_2O . The organic layer was washed with 7% aqueous NaHCO₃ and dried over MgSO4. Evaporation of the organic solvent gave a crude oil, which was chromatographed on silica gel (25 g, *n*-hexane/AcOEt = 10:1) to afford a 7:1 mixture [0.168 g, 54% overall yield from $(13E)$ -16] of $(2'E)$ -29 and $(2'Z)$ -**29**. The E/Z ratio was calculated based on the NMR analysis of integrated values due to the olefinic proton (δ 5.30 (t) and 5.24 (t)). $(2'E)$ -29 (major product): IR (neat): 3382 cm^{-1} ; ¹H NMR: δ 0.81 (3H, s), 0.86 (3H, s), 0.91 (3H, s), 1.07–1.16 (2H, m), 1.35–1.46 (3H, m), 1.55 (3H, s), 1.58–1.64 (3H, m), 1.73 (3H, s), 1.75–1.81 (1H, m), 1.88–2.12 (6H, m), 3.33 (2H, d, $J = 7$ Hz), 3.45 (3H, s), 4.58 (2H, s), 5.18 (2H, s), 5.29 (1H, t, $J = 7$ Hz), 7.02 (1H, d, $J = 8$ Hz), 7.13 (1H, dd, $J = 8$, 2 Hz), 7.14 (1H, d, $J = 2$ Hz), 9.85 (1H, s). ¹³C NMR: δ 16.2 (q), 19.1 (t, 2C), 19.6 (q), 20.2 (q), 21.7 (q), 28.6 (t), 29.3 (t), 33.3 (s), 33.3 (q), 33.6 (t), 37.0 (t), 39.0 (s), 40.5 (t), 41.8 (t), 51.9 (d), 55.9 (q), 65.2 (t), 94.2 (t), 113.9 (d), 121.6 (d), 125.7 (s), 125.8 (d), 128.7 (d), 128.8 (d), 131.1 (s), 134.0 (s), 137.1 (s), 140.5 (s), 154.4 (s). HREI-MS: calcd for $C_{29}H_{44}O_3$, 440.3291; found, 440.3296.

6.19. Oxidation of $(2[']E)$ -29 and $(2[']Z)$ -29

To a solution of a 7:1 mixture (0.113 g, 0.25 mmol) of $(2'E)$ -29 and $(2'Z)$ -29 and in CH_2Cl_2 (2 mL) was added $MnO₂$ (0.764 g, 8.8 mmol) at rt and the whole mixture was stirred for 2 h at the same temperature. The reaction mixture was filtered with the aid of Celite. The filtrate was evaporated to give a crude residue, which was chromatographed on silica gel (5 g, n-hexane/AcOEt = $50:1$) to give an 8:1 mixture $(0.104 \text{ g}, 92\%)$ of $(2'E)$ -30 and $(2'Z)$ -30 as a colourless oil. $(2'E)$ -30 (major product): IR (neat): 1692 cm^{-1} ; ¹H NMR: δ 0.81 (3H, s), 0.86 (3H, s), 0.92 (3H, s), 1.10–1.18 (2H, m), 1.35–1.47 (3H, m), 1.52– 1.64 (3H, m), 1.55 (3H, s), 1.74 (3H, s), 1.78–1.83 (1H, m), 1.81–2.11 (6H, m), 3.36 (2H, d, $J = 7$ Hz), 3.47 (3H, s), 5.27 (2H, s), 5.30 (1H, t, $J = 7$ Hz), 7.15 (1H, d, $J = 8$ Hz), 7.68 (1H, dd, $J = 8$, 2 Hz), 7.69 (1H, d, $J = 2$ Hz), 9.85 (1H, s). ¹³C NMR: δ 16.4 (q), 19.2 (t, 2C), 19.7 (q), 20.3 (q), 21.8 (q), 27.3 (t), 28.7 (t), 33.4 (s), 33.4 (q), 33.7 (t), 37.1 (t), 39.1 (s), 40.6 (t), 41.9 (t), 52.0 (d), 56.3 (q), 93.9 (t), 113.1 (d), 120.5 (d), 125.7 (s), 130.0 (d), 130.3 (s, 2C), 130.8 (d), 131.4 (s), 137.9 (s), 140.2 (s), 191.0 (d). Anal. Calcd for $C_{29}H_{42}O_3$ H₂O: C, 76.55; H, 9.42. Found: C, 76.27; H, 9.71. EI-MS m/z : 438 (M⁺).

$6.20. (-)$ -Subersic acid 3

(i) To a solution of a 8:1 mixture $(0.122 \text{ g}, 0.28 \text{ mmol})$ of $(2'E)$ -30 and $(2'Z)$ -30 and 2-methyl-2-butene $(4 mL)$ in $tert-BuOH$ (2 mL) was added NaClO₂ (0.263 g, 2.9 mmol) and NaH₂PO₄ (0.212 g, 1.8 mmol) in H₂O (1 mL) at rt and the whole mixture was stirred for 3 h at the same temperature. The reaction mixture was diluted with 2 M aqueous HCl and extracted with $Et₂O$. The organic layer was dried over MgSO₄. Evaporation of the organic solvent gave a crude product, which was chromatographed on silica gel (5 g, *n*-hexane/AcOEt = 10:1) to give a 9:1 mixture (0.068 g, 53%) of $(2'E)$ -31 and $(2'Z)$ -31 as a colourless oil. Major $(2'E) - 31$: IR (neat): 1686 cm⁻¹; ¹H NMR: δ 0.81 (3H, s), 0.86 (3H, s), 0.92 (3H, s), 1.08–1.20 (2H, m), 1.33– 1.48 (3H, m), 1.52–1.59 (3H, m), 1.55 (3H, s), 1.74 (3H, s), 1.78–1.83 (1H, m), 1.88–2.14 (6H, m), 3.35 (2H, d, $J = 7$ Hz), 3.46 (3H, s), 5.26 (2H, s), 5.30 (1H, t, $J = 7$ Hz), 7.08 (1H, d, $J = 8$ Hz), 7.90 (1H, d, $J =$ 2.3 Hz), 7.91 (1H, dd, $J = 8$, 2.3 Hz). ¹³C NMR: δ 16.4 (q), 19.2 (t, 2C), 19.7 (q), 20.2 (q), 21.9 (q), 27.3 (t), 28.7 (t), 33.4 (s), 33.5 (q), 33.7 (t), 37.1 (t), 39.1 (s), 40.6 (t), 41.9 (t), 52.0 (d), 56.2 (q), 93.9 (t), 112.7 (d), 120.9 (d), 121.1 (s), 125.7 (s), 129.8 (s), 130.7 (s), 131.7 (d), 137.6 (s), 140.3 (s), 159.1 (s), 171.0 (s). HREI-MS: calcd for $C_{29}H_{42}O_4$, 454.3078; found, 454.3083. (ii) To a solution of a 9:1 mixture $(0.063 \text{ g}, 0.14 \text{ mmol})$ of $(2'E)$ -31 and $(2'Z)$ -31 in THF (5 mL) was added 6 M aqueous HCl (3 mL) at rt and the whole mixture was stirred for 3 h at 40 °C. The reaction mixture was diluted with H_2O and extracted with AcOEt. The organic layer was washed with brine and dried over MgSO4. Evaporation of the organic solvent gave a crude product, which was chromatographed on silica gel (15 g, *n*-hexane/AcOEt = 1:1) to give a carboxylic acid. This crude carboxylic acid was subjected to preparative HPLC to afford $(-)$ -3 (0.040 g, 69%) as a colourless amorphous solid. Compound $(-)$ -3: $[\alpha]_D^{24} = -46.7$

(c 0.17, CHCl₃); IR (neat): 3280 (br), 1682, 1600 cm⁻¹; ¹H NMR: d 0.81 (3H, s), 0.86 (3H, s), 0.92 (3H, s), 1.08–1.26 (3H, m), 1.32–1.48 (3H, m), 1.53–1.64 (3H, m), 1.55 (3H, s), 1.80 (3H, s), 1.88–2.12 (6H, m), 3.40 (2H, d, $J = 7$ Hz), 5.33 (1H, t, $J = 7$ Hz), 6.84 (1H, d, $J = 9$ Hz), 7.88 (1H, dd, $J = 9$, 1.8 Hz), 7.89 (1H, d, $J = 1.8$ Hz). ¹³C NMR: δ 16.5 (q), 19.2 (t, 2C), 19.7 (q), 20.3 (q), 21.8 (q), 27.2 (t), 29.7 (t), 29.8 (t), 33.4 (q), 33.7 (t), 37.1 (t), 39.1 (s), 40.5 (t), 41.9 (t), 51.9 (d), 113.6 (d), 120.0 (d), 121.5 (s), 125.9 (s), 126.7 (s), 130.4 (d), 132.4 (d), 139.9 (s), 140.4 (s), 159.3 (s), 171.6 (s). Anal. Calcd for $C_{27}H_{38}O_3$. 2H2O: C, 72.61; H, 9.48. Found: C, 72.88; H, 9.22. EI- $MS \ m/z$: 410 (M^+) .

Acknowledgement

The authors are grateful to Professor Kazuo Koike at Toho University in Japan for preparative HPLC separa- ϕ tion of the synthetic $(-)$ -subersic acid in his laboratory.

References

1. Coval, S. J.; Conover, M. A.; Mierzwa, R.; King, A.; Puar, M. S.; Phife, D. W.; Pai, J.-K.; Burrier, R. E.; Ahn, H.-S.; Boykow, G. C.; Patel, M.; Pomponi, S. A. Bioorg. Med. Chem. Lett. 1995, 5, 605–610.

- 2. Butler, M. S.; Capon, R. J. Anst. J. Chem. 1991, 44, 77– 85.
- 3. Carroll, J.; Jonsson, E. N.; Ebel, R.; Hartman, M. S.; Holman, T. R.; Crews, P. J. Org. Chem. 2001, 66, 6847– 6851.
- 4. (a) Barreo, A. F.; Manzaneda, E. A.; Altarejos, S. S.; Ramos, J. M.; Simmonds, M. S. J.; Blaney, W. M. Tetrahedron 1995, 51, 7435–7450; (b) Barreo, A. F.; Alvarez-Manzaneda, E. J.; Chahboun, R. Tetrahedron Lett. 1997, 38, 8101– 8104.
- 5. Tanada, Y.; Mori, K. Eur. J. Org. Chem. 2003, 848–854.
- 6. Furuichi, N.; Hata, T.; Soetjipto, H.; Kato, M.; Katsumura, S. Tetrahedron 2001, 57, 8425–8442.
- 7. Amano, Y.; Kinoshita, M.; Akita, H. J. Mol. Cat. B: Enzym. 2004, 32, 141–148.
- 8. Chackalamannil, S.; Wang, Y.; Xia, Y.; Czarmiecki, M. Tetrahedron Lett. 1995, 36, 5315–5318.
- 9. Drew, M. G. B.; Harwood, L. M.; Jahans, A.; Robertson, J.; Swallow, S. Synlett 1999, 185–188.
- 10. Blakemore, P. R. J. Chem. Soc., Perkin Trans. 1 2002, 2563– 2585.
- 11. Basabe, P.; Diego, A.; Delgado, S.; Diez, D.; Marcos, I. S.; Urones, J. G. Tetrahedron 2003, 59, 9173–9177.
- 12. Keaton, K. A.; Phillips, A. J. J. Am. Chem. Soc. 2006, 128, 408–409.